
Modern Machine Learning Approaches For
Robotic Path Planning

Analytic research and comparison

Shreyas J
Dept. of Computer Science

Christ University,
Bangalore, India

Sandeep J
Dept. of Computer Science,

Christ University,
Bangalore, India

Abstract—Many years have passed since the first path
planning algorithm was found. These algorithms have evolved
a lot since then. Even the best of the path finding algorithms
were incapable to give the ideal result which was needed to
find the path. Especially in terrains where the algorithms
couldn’t overcome the obstacle because that situation wasn’t
predicted beforehand. The ideal path was found using trial
and error methods after the unpredicted events led to the
collision of the robot. This problem was resolved when the
robots gained the ability to outperform itself in these
situations by learning what went wrong on its own and
making sure the exact same event doesn’t occur again. These
machine learning algorithms emerged in the past decade and
were continuously improvised and were perfected to have a
very high success rate. In this survey of the path finding
algorithms, the timeline and the working of algorithms and
how these algorithms have developed and improvised over
time can be seen.

Keywords— path-planning; machine-learning; robotics;
Artificial intelligence; high-efficiency

I. INTRODUCTION

Navigation of rovers can be defined as the
amalgamation of the three fundamental competences which
need to be achieved by the rover in real time.

 Self-localisation

 Path finding

 Map interpretation

 Actuation

Self-localization is a state where the robot makes
complete sense of the environment around it and is familiar
with what is around it in extensively.

The path finding subsystem is responsible for finding
an optimal traversable path from the start point to the end
point. This includes the steps taken in a particular direction
using the entire sequence of actions and rewards.

The map-interpretation used to explain the algorithms
in this paper have simple representations which may
consist of either a single value or a single pair of values.
Complex representations are also used which include high
end graphical model and geometric maps of the
environment

Actuation is where the robot reacts on the environment
based on the above two processes. This involves the robot
physically moving in certain directions that in turn modify

the physical relationship between the robot and the
environment in is in and represented in.

As you can see the above components of path finding
are all co related to each other. In this paper, focus is on
the finding subsystems.

II. METHODS THAT ARE NOT PATH-PLANNING

The intent of this paper is to examine the differences
between the classical path planning algorithms and the
algorithms that use machine learning in order to traverse
through the environment to reach the goal state from the
start. Path planning is sometimes confused with these
machine learning algorithms. These two ways of path
finding aren’t the same. Therefore, the need to distinguish
between what actual path planning is and how it’s done
and what are machine learning path planning algorithms
and how they are done.

III. PATH PLANNING: ALGORITHMS

Path planning algorithms find the path from the start to
the end autonomously and monotonously by finding a set
sequence of actions and decisions based on the
representation given. These sequences are decided by the
algorithm based on the representation of the map present.
These algorithms are usually designed for certain type of
environments suitable for the algorithm to function. This is
a reason why there are so many more path planning
algorithms than machine learning algorithms.

A. Dijkstra’s algorithm

Dijkstra’s algorithm is the most basic path planning
algorithm available. This was the very first of the path
planning algorithms. The algorithm achieves the shortest
path to the destination using a set of visited and unvisited
nodes and values assigned to each node.

1. The node at which we are starting at as the initial
node is called. The following nodes say Y will be the
distance of that node from the initial node.

2. The first initialization is the tentative distance
values of all the nodes to infinity except the initial node
which will be initialized to 0.

3. The initial node is now marked as current and all
the other nodes are added to a newly created set and name
it as the unvisited node set.

Shreyas J et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (2) , 2017, 256-259

www.ijcsit.com 256

4. For the current node, consider all the unvisited
nodes around that node and calculate their tentative
distance. Compare the newly calculated tentative distance
to the current assigned value and assign the smaller value
to the node. If the node isn’t connected to the current node,
leave the node as is.

5. When all the nodes around the current node are
check, mark the current node as visited and remove it from
the unvisited set.

6. If the destination node is marked as visited or if
the destination node is not traversable, then stop.

7. If not, select he next unvisited node from the set
of unvisited nodes and mark it as the current node and
return to step 4.

B. A* algorithm

A* is an informed search algorithm, it is the most
favorable path finding algorithm because it’s very flexible
and can find paths in a variety of different situations
effortlessly. It is largely based on the Dijkstra’s algorithm
and uses a heuristic search to guide itself to find the
shortest path. The secret to its high success rates is that it
uses the best features of the Dijkstra’s search i.e. it favors
the vertices closest to the starting point and the best
features from the greedy best-first-search i.e. favoring the
vertices closest to the goal. In the usual terminology while
using A* algorithm, g(n) is used to denote the exact cost of
traversal from the current vertex to any other vertex n on
the given representation, and h(n) to denote the heuristic
estimated cost from the vertex n to the goal. While the A*
search is run, it balances both these values by finding the
lowest f(n) value with n being the value of the next vertex
and f(n) = g(n) + h(n).

The algorithm puts all the vertices present, in a
list called the open list which lets the algorithm know that
the vertices in that list aren’t traversed yet. While
traversing through the vertices that the algorithm chooses,
the algorithm puts the vertices traversed in the closed list
so that these vertices won’t be traversed again. The vertices
not traversed will remain in the open list.

Additionally, if the heuristic becomes very monotonous, a
closed set of nodes already traversed before may be used in
order to make the search for the goal vertex more efficient.

C. LPA* Algorithm

The Lifelong Planning a* algorithm has been
developed with a specific type of path finding in mind.
This kind of pathfinding has the start and the goal state as
the same points but the actual path finding is performed by
changing the representation of the path. If the number of
changes is comparatively small, then it is more efficient to
repair the existing search tree than to perform the search
from the start again. If the given search tree is as the one
required for this algorithm then, the Lifelong Planning A*
can be implemented by reinserting the vertices into the
open-list of all nodes with the modified edge costs or
connectivity. These changes can be then sent to the
algorithm through the search tree as always. The lifelong

planning stores the search tree structure not with pointer
but with the cost of the values from these vertices to the
goal state. When the algorithm reaches the start node, the
path is then returned.

D. D* lite algorithm

The Dynamic A* or the D* algorithm is very similar to
the Lifelong Planning A* algorithm, except that the start
node here is allowed to change in-between searches.
Similar to the LPA* the edge costs are allowed to change
here too. In this algorithm, the more traditional notion of
explicitly updating the back pointers is used as opposed to
the one used in lifelong planning A* which is the implicit
search-tree. This algorithm is the modified version of the
D* and was developed almost a decade later which again
used the implicit search-tree representation. Since then
algorithms use the word ‘lite’ to describe algorithms with
the implied search-tree representation.

 This algorithm is widely used for robot navigation
which run with the help of sensors. Hence the algorithm
selects the best path visible to the robot and the path it is
going to traverse in the near future. But the goal state is
always rooted for obvious reasons. Hence the changes that
the algorithm makes can only affect the edge structure or
the cost of the edges which is farther away from the goal.
Therefore, the changes made only affect the outer branches
of the search-tree and most of the search tree need not be
modified. Like the A* the D* also takes up quite a lot of
time to compute the initial path to traverse, but the
subsequent searches are much faster. In a long run, the D*
can reduce in magnitude when compared to the A*. This
allows the representations to ink out larger pieces of the
representation and this representation can be modeled at a
higher resolution.

E. Field D*

Graph search techniques such as Dijkstra A* and D*
algorithms find the optimal path to the goal using graph
representation which is two dimensional 4- or 8- connected
structure. The movement is broken into horizontal and
vertical movements i.e. are 90 degree turns whereas in 8-
connected it is decomposed to 45 degree turns. In a
uniform map, the path that occurs on a 4-connectred(8-
connected) graph, there are usually many optimal paths
having the same costs to traverse. These paths alternate
between horizontal and vertical movements. While the
former is globally suboptimal the latter is suboptimal
locally. However, from the set of given optimal paths,
finding the best w.r.t. the real world is computationally
infeasible. Usually the common solution for this is to
break ties by moving towards the goal but this technique
fails if there is an obstacle in the path. The Field D* avoids
the problem of tie-breaking by operating in a continuous
environment that envelopes the 4-connected or 8-
connected graph. The graph nodes present in this system
are contained as discrete sampling over a continuous field
for the distance cost to be calculated which is required to
reach the goal. The Field D* operates similar to the D* lite
algorithm, except that the calculation of the cost from the
vertex to the goal for continuous points on a graph is done

Shreyas J et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (2) , 2017, 256-259

www.ijcsit.com 257

using a linear interpolation between these cost values of
the edges two end nodes. This allows the paths planned to
follow the trajectories in the continuous domain. This
algorithm is assumed to be implemented in a ‘lite’
environment which was mentioned earlier. Here, the edges
are not explicitly followed, although in an 8-connected
structure the edges is used to determine how the
relationship between the node values and the field values
and how they were calculated.

IV. MACHINE LEARNING: ALGORITHMS

A. Reinforcement Learning

These algorithms are machine learning algorithms
which teach the system to take appropriate actions based
on the concept of rewards and punishments. This world in
which this system exists is assumed as the Markov
decision process or MDP. The reinforcement learning
principle was derived from this system. Although this
algorithm doesn’t explicitly model the MDP, these still are
in this system and are called as the model-free methods.
When a particular action is performed are a particular state,
the probability distribution created with the system is
called a policy. The system is allowed to modify its policy
w.r.t. the rewards and/or punishments it receives.
Punishments are also called are negative rewards. Usually
the policy is computed by using the sum of the immediate
reward from a particular action and the discounted sum of
all the rewards that are eventually received after the
original action was chosen. The drawback of this algorithm
is that the system is trained to perform like an expert in the
path planning process. This can pose to be a threat because
of the policy based learning system.

B. Classical Q Learning

 The Classical Q-Learning algorithm (CQL) like
the reinforced learning algorithm gets the results by using
the concept of the reward system. This is done by taking
into account the rewards that the system will receive in the
future, that are because of the actions taken by the system
previously. This makes the algorithm better as it takes into
account the fact that some actions that are optimal locally
are sub optimal globally. The future rewards that are taken
into consideration are subtracted with the value γ to
account the uncertainty of it actually happening. The Q in
the Q-Learning comes from the representation of the sum
of the reward to be received from performing a particular
action. Taking an assumption that there is a Q-table present
with all the possible Q values, the largest of these Q values
at every step is chosen. These Q values are obtained by
repeated interaction with the environment.

The CQL requires a memory of (n × m) to keep
track of the Q-table. The drawback in this method is that
for large values of n, the space complexity is high. This is
revised in the IQL algorithm, were an attempt was made to
reduce this space complexity.

C. Improverd Q Learning

In the IQL algorithm presented here, involves having n
Boolean variables called Lock for n states to indicate

whether Q (S, a) at state S due to action a need to be
updated. The Lock variables are used to avoid unnecessary
update of entries Q (S, a) in the Q-table and, thus, to save
time complexity. Beside this, in IQL, there is a requirement
of n-memories to store n-Lock variables associated with n
states. Here, instead of the Q-table of n × m dimension,
there is a requirement to store the best Q-value of a state
because of any action and thus require n-memories for n
best Q-values of n states. This is denoted by Li.

In this path-planning algorithm, the environment is
made up of states just like that of the CQL algorithm. A
state can have four neighbors. Consequently, the next best
action to make the next move for the robot is achieved by
selecting the largest Q-value. This continues till the goal
state is achieved.

In the initialization phase of the algorithm, there exists a
lock variable at all states except the goal state which is set
to zero. The immediate reward from any neighboring state
to the goal state is set to a certain constant value and
discounting factor for estimating the uncertainty is set to γ
and the initial state of the algorithm are fixed up.

In the present updated update policy of the IQL Q-table,
the lock state L is initialized to 1 and the Q-Table isn’t
modified unless the current state or the next state is the
goal state.
In order, to reach the goal state, the robot usually has to
traverse in the environment for a finitely large number of
iterations. To avoid the unnecessary modification of the Q-
table update, a small repeat-until loop between the two
main phases of the program is added. This loop continues
selecting an action and executing it (without updating the
Q-table) until the robot reaches the goal. Once the robot
reaches the goal, the first repeat-until loop exits, and the Q-
table updating is initiated. The process of Q-table updating
is continued until all the states are locked.

V. CONCLUSION

In this survey and analysis of all these algorithms gives an
idea and an understanding of the flow of the creation and
implementations of the algorithms and how these
algorithms were modified and bettered as time passed and
how they were modified for different situations and
predicaments. Also, there an increase in the artificial
intelligence in every algorithm as we go through the flow
of the paper.

Despite these algorithms being intelligent, there
were better ways to find paths, faster ways, ways with
which we do not even need an algorithm. Ways which
were intelligent enough to learn and become more
intelligent on its own. These algorithms are better than the
path planning algorithms as they hardly take up space on
the computer. Even though they need to run for a set
number of times to start off the learning process, they are
the fastest way to find a path after this learning process is
done. These machine learning concept uses the Q-learning
way of defining the states and rewards to find this path.

Shreyas J et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (2) , 2017, 256-259

www.ijcsit.com 258

This classical approach was further optimised and
structured to outperform the previous version.

Now that there’s a new way of path planning, i.e.
by finding a dynamic self-customised path spontaneously,
there is no need of having algorithms on the computer to
find paths. The use of the IQL uses only a table of Q-
values with which the path is found which uses only a
quarter of the space a normal algorithm may use. These
new ways of finding the paths not only save time and
energy but also save a lot of space on on-board computer
on robots which usually have limited data space and
memory.

REFERENCES
[1] A D. Ferguson, M. Likhachev, A. Stentz, A guide to heuristic-based

path planning, in: Proceedings of the Workshop on Planning under
Uncertainty for Autonomous Systems at the International
Conference on Automated Planning and Scheduling (ICAPS), 2005.

[2] Jiang, Bomin, et al. "Path planning for minimizing detection." IFAC
Proceedings Volumes 47.3 (2014): 10200-10206.

[3] Masehian, Ellips, and Davoud Sedighizadeh. "Classic and heuristic
approaches in robot motion planning-a chronological review."
World Academy of Science, Engineering and Technology 23
(2007): 101-106.

[4] Koenig, Sven, and Maxim Likhachev. "D^* Lite." AAAI/IAAI.
2002.

[5] Mills-Tettey, G. Ayorkor, Anthony Stentz, and M. Bernardine Dias.
"DD* Lite: Efficient Incremental Search with State Dominance."
Proceedings of the National Conference on Artificial Intelligence.
Vol. 21. No. 2. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, 2006.

[6] Konar, Amit, et al. "A deterministic improved Q-learning for path
planning of a mobile robot." IEEE Transactions on Systems, Man,
and Cybernetics: Systems 43.5 (2013): 1141-1153.

[7] Koenig, Sven, Maxim Likhachev, and David Furcy. "Lifelong
planning A∗." Artificial Intelligence 155.1-2 (2004): 93-146.

[8] Lumelsky, Vladimir J. "A comparative study on the path length
performance of maze-searching and robot motion planning

algorithms." IEEE Transactions on Robotics and Automation 7.1
(1991): 57-66.

[9] Sariff, N., and Norlida Buniyamin. "An overview of autonomous
mobile robot path planning algorithms." Research and
Development, 2006. SCOReD 2006. 4th Student Conference on.
IEEE, 2006.

[10] Zhu, D. J., and J-C. Latombe. "New heuristic algorithms for
efficient hierarchical path planning." IEEE Transactions on Robotics
and Automation 7.1 (1991): 9-20.

[11] Thrun, Sebastian, et al. "Stanley: The robot that won the DARPA
Grand Challenge." Journal of field Robotics 23.9 (2006): 661-692.

[12] Massari, Mauro, et al. "Optimal path planning for planetary
exploration rovers based on artificial vision system for environment
reconstruction." Advanced Intelligent Mechatronics. Proceedings,
2005 IEEE/ASME International Conference on. IEEE, 2005.

[13] Ono, Masahiro, et al. "Risk-aware planetary rover operation:
Autonomous terrain classification and path planning." Aerospace
Conference, 2015 IEEE. IEEE, 2015.

[14] Dong, Shaoyang, Hehua Ju, and Hongxia Xu. "An improvement of
D∗ lite algorithm for planetary rover mission planning."
Mechatronics and Automation (ICMA), 2011 International
Conference on. IEEE, 2011.

[15] Ishigami, Genya, Keiji Nagatani, and Kazuya Yoshida. "Path
planning for planetary exploration rovers and its evaluation based on
wheel slip dynamics." Robotics and Automation, 2007 IEEE
International Conference on. IEEE, 2007.

[16] Sakuta, Mariko, Shogo Takanashi, and Takashi Kubota. "An image
based path planning scheme for exploration rover." Robotics and
Biomimetics (ROBIO), 2011 IEEE International Conference on.
IEEE, 2011.

[17] Meyer, Jean-Arcady, and David Filliat. "Map-based navigation in
mobile robots:: Ii. a review of map-learning and path-planning
strategies." Cognitive Systems Research 4.4 (2003): 283-317.

[18] Cannon, Jarad, Kevin Rose, and Wheeler Ruml. "Real-Time Motion
Planning with Dynamic Obstacles." SOCS. 2012.

[19] Otte, Michael W. "A survey of machine learning approaches to
robotic path-planning." Cited on: pdfs.semanticscholar.org.

[20] Stentz, Anthony. "The focussed D^* algorithm for real-time
replanning."IJCAI.Vol.95.1995.

Shreyas J et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (2) , 2017, 256-259

www.ijcsit.com 259

